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Abstract. We analyse the data for the proton structure function F2 over the entire Q2 domain, including
especially low Q2, in terms of perturbative and non-perturbative QCD contributions. The small distance
configurations are given by perturbative QCD, while the large distance contributions are given by the vector
dominance model and, for the higher mass qq states, by the additive quark approach. The interference
between states of different qq̄ mass (in the perturbative contribution) is found to play a crucial role in
obtaining an excellent description of the data throughout the whole Q2 region, including photoproduction.

1 Introduction

There now exist high precision deep inelastic ep scattering
data [1,2] covering both the low Q2 and high Q2 domains,
as well as measurements of the photoproduction cross sec-
tion. The interesting structure of these measurements, in
particular the change in the behaviour of the cross section
with Q2 at Q2 ∼ 0.2GeV2, highlight the importance of
obtaining a theoretical QCD description which smoothly
links the non-perturbative and perturbative domains.

In any QCD description of a γ∗p collision, the first
step is the conversion of the initial photon into a qq pair,
which is then followed by the interaction of the pair with
the target proton. Let σ(s, Q2) be the total cross section
for the process γ∗p → X where Q2 is the virtuality of
the photon and

√
s is the γ∗p centre-of-mass energy. It

is related to the forward γ∗p elastic amplitude A by the
optical theorem, Im A = sσ. We may write a double
dispersion relation [3] for A and obtain for fixed s

σ(s, Q2) =
∑

q

∫
dM2

M2 + Q2

∫
dM ′2

M ′2 + Q2 ρ(s, M2, M ′2)

×1
s

Im Aqq+p(s, M2, M ′2) (1)

where M and M ′ are the invariant masses of the incoming
and outgoing qq̄ pair. The relation is shown schematically
in Fig. 1. If we assume that forward qq +p scattering does
not change the momentum of the quarks1 then Aqq+p is
proportional to δ(M2 − M ′2), and (1) becomes

1 In a more detailed treatment this assumption is no longer
valid, see (22) and (29) below, and the discussion in Sect. 4
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Fig. 1. The schematic representation of the double dispersion
(1) for the γ∗p total cross section σ(s, Q2) at fixed c.m. energy√

s. The cut variables, M and M ′, are the invariant masses of
the incoming and outgoing qq states in the quasi-elastic for-
ward amplitude, Aqq+p

σ(s, Q2) =
∑

q

∫ ∞

0

dM2

(M2 + Q2)2
ρ(s, M2)

×σqq+p(s, M2) (2)

where the spectral function ρ(s, M2) is the density of qq
states.

Following Badelek and Kwiecinski [4] we may divide
the integral into two parts2, the region M2 < Q2

0 described
by the vector meson dominance model (VDM) and the re-
gion M2 > Q2

0 described by perturbative QCD. Suppose
that we assume ρσqq+p is a constant independent of M2

2 Although Badelek and Kwiecinski base their fit to the data
on (2), they also discuss the more general case in which M 6=
M ′ contributions may be included in the spectral function ρ
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(which should be true modulo logarithmic QCD correc-
tions) then the perturbative component of the integral is∫ ∞

Q2
0

dM2

(M2 + Q2)2
ρσ =

∫ ∞

0

dM2

(M2 + Q2 + Q2
0)2

ρσ

= σ(s, Q2 + Q2
0). (3)

Thus (2) becomes

σ(s, Q2) = σ(VDM) + σQCD (s, Q2 + Q2
0) (4)

where the QCD superscript indicates that the last contri-
bution is to be calculated entirely from perturbative QCD.

We may use

σ(s, Q2) =
4π2α

Q2 F2(x, Q2) (5)

where x = Q2/(s + Q2 − M2) to rewrite (4) as

F2(x, Q2) = F2(VDM)+
Q2

Q2 + Q2
0
FQCD

2 (x, Q2+Q2
0) (6)

where x = (Q2 + Q2
0)/(s + Q2 + Q2

0 − M2). The vector
meson dominance term has the form3

F2(VDM) =
Q2

4π

∑
V

M4
V σV (s)

γ2
V (Q2 + M2

V )2
(7)

where MV is the mass of vector meson V and where the
sum is over the vector mesons which fall in the region
M2

V < Q2
0. The vector meson-proton cross sections σV (s)

can be determined from the πp and Kp total cross sections
using the additive quark model and γ2

V from the leptonic
width of the vector meson V . The last term in (6) can
be determined from perturbative QCD using the known
parton distributions. This approach was first proposed by
Badelek and Kwiecinski (BK) [4]. We see that the BK
model, (4) and (6), makes a parameter free prediction of
F2(x, Q2) which is expected to be valid, for s � Q2, for
all Q2 including very low Q2. The BK predictions give
an excellent description of the F2 data for Q2 >∼ 1 GeV2,
but overshoot the new measurements of F2 for smaller
values of Q2. This deficiency of the model was removed
in a fit to the F2 data performed by the H1 collaboration
[1], but at the expense of using an unreasonably low value
for Q2

0 = 0.45GeV2 and of introducing an ad hoc factor of
0.77 to suppress the VDM term.

The Badelek-Kwiecinski idea to separate perturbative
and non-perturbative contributions is very attractive. To
exploit it further we must achieve a better separation be-
tween the short and long distance contributions. To do
this we take a two-dimensional integral over the longitu-
dinal and transverse momentum components of the quark,
rather than simply over the mass M of the qq pair.

The contribution coming from the small mass region
is pure VDM and is given by (7). However, the behaviour

3 Strictly speaking (7) is the formula FT . The small longitu-
dinal component will be discussed later

of the cross section at large M2 is a more delicate ques-
tion. The part which comes from large kT of the quark
can be calculated by perturbative QCD in terms of the
known parton distributions, whereas for small kT we will
use the additive quark model and the impulse approxi-
mation. That is only one quark interacts with the target
and the quark-proton cross section is well approximated
by one third of the proton-proton cross section.

At this point it is interesting to note some recent ex-
cellent parametric fits of the low Q2 data for F2, or rather
for σ(γ∗p); see Sect. 8 of [5] for a recent review. One fit
is based on (2) and the generalised VDM [6]. To be more
precise it is based entirely on a parametrization of the
vector meson + proton cross section and does not take
advantage of our present knowledge of perturbative QCD.
As a consequence some anomalies appear. For instance
the photoproduction cross section becomes negative for√

s < 6GeV (or σ(V p) < 0 for MV > 0.26
√

s). Second
the model has anomalously large values of R = σL/σT

(where FL is obtained by including a factor ξQ2/M2
V on

the right-hand-side of formula (7) for FT ). In the well-
known deep inelastic region the model predicts R > 1 for
Q2 > 35GeV2 and x > 0.01 (and even R > 4 for x > 0.1)
whereas the data indicate that R ' 0.2 − 0.3. This effect
probably reflects, as the authors note, the omission of al-
lowing ξ to depend on Q2, see (32) below. Rather their
model has ξ = 0.171 for all Q2.

An earlier approach based on the generalised VDM can
be found in [7]. In addition to the VDM contributions,
this work contains a contribution at small x coming from
“heavy” long-lived fluctuations of the incoming photon,
which are parametrized in terms of a “hard” Pomeron
whose intercept is found to be αP ′ = 1.289.

An excellent fit to the data has also been obtained in
[8] by assuming that perturbative QCD evolution is ap-
plicable to the lowest values of Q2, using both a hard
(singular) input form, x−0.47, together with a soft (con-
stant) Pomeron term. The latter term is modified by a
factor Q2/(Q2 + M2) with M = 0.87 GeV and, moreover
is assumed not to evolve at low Q2. In order to achieve a
finite cross section as Q2 → 0, the model assumes that the
strong coupling αS saturates and requires the two remain-
ing perturbative terms (the hard singlet term and a non-
singular, non-singlet contribution) to vanish as Q2 → 0.
The model is thus quite contrived, but this is the price
to be paid when using perturbative QCD in a domain in
which it is not applicable.

There have been a number of Regge-motivated models
in which the Pomeron intercept is allowed to vary with
Q2, see for example [9] and [10]. The idea is that at low
Q2 we see a “shadowed” rather than a “bare” Pomeron,
then as Q2 increases the shadowing effects disappear to
reveal a hard Pomeron with a larger intercept. The early
models do not reproduce the new low Q2 data, but a very
recent phenomenological fit along these lines shows that a
good description is possible [11]. Another recent fit, based
on the Regge motivated ALLM parametrization [10], can
be found in [12]. The description, with 23 parameters, de-
scribes the data well and may be used to interpolate the
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measurements. On the other hand the physical basis of
the parametrization is not clear. For example a variable
xIP is defined by

1
xIP

= 1 +
W 2 − M2

Q2 + M2
IP

(8)

where W =
√

s is the γ∗p centre-of-mass energy, M is the
proton mass and MIP reflects the energy scale of Pomeron
exchange. This latter scale turns out to be extremely large,
M2

IP = 49.5 GeV2, much larger than any hadron or glue-
ball mass. Secondly the intercept, αR(0), of the secondary
trajectory decreases with Q2, which is contrary to Regge
theory (where αR is independent of Q2).

The description of the F2 or σ(γ∗p) data presented
in this paper is quite different. We use a physically mo-
tivated approach with very few free parameters, and we
clearly separate the contributions to F2 coming from the
large (small quark kT ) and small (large kT ) distances. A
recent study with a similar philosophy to ours can be
found in [13]. They achieve a qualitative description of
the experimental data over a wide range of photon vir-
tualities (Q2) and energies (W ) in terms of short and
long distance contributions. They emphasize that even in
the very low Q2 region the short distance contribution is
not small, and also that at large Q2 the long distance ef-
fects still contribute. Here we present a quantitative study
which involves a more precise approximation for the qq̄+p
cross section and includes consideration of the longitudi-
nal structure function FL. Other differences are that we
compute the (small kT ) non-perturbative component us-
ing the VDM for small qq̄ masses M < Q0 and the addi-
tive quark model for M > Q0; we do not need an artificial
suppression4 of the VDM component. Moreover we make a
careful treatment of the perturbative component, repeat-
ing the entire analysis of [14], which involves solving cou-
pled integro-differential equations for the gluon-quark sin-
glet distributions. This method means that we are work-
ing directly in terms of an unintegrated gluon distribution
f(x, k2

T ), which satisfies a unified evolution equation that
embodies both DGLAP and BFKL evolution. It has the
advantage that it is applicable over the entire perturbative
domain since it performs the resummation of both leading
log(1/x) and log(Q2) terms.

2 The γ∗p cross section

The spectral function ρ occurring in (1) may be expressed
in terms of the γ∗ → qq matrix element M. We have
ρ ∝ |M|2 with, for transversely polarised photons,

MT =

√
z(1 − z)

Q
2

+ k2
T

uλ(γ · ε±)uλ′

(9)

=
(ε± · kT )[(1 − 2z)λ ∓ 1] δλ,−λ′ + λmq δλλ′

Q
2

+ k2
T

.

4 In [13] an ad hoc suppression factor of 0.6 is used

We use the notation of [15], which was based on the earlier
work of [16]. Namely the photon polarisation vectors are

εT = ε± =
1√
2

(0, 0, 1, ±i), (10)

and λ, λ′ = ±1 corresponding to q, q helicities of ± 1
2 . Also

we introduce

Q
2

= z(1 − z)Q2 + m2
q. (11)

Note that (9) is written in terms of “old-fashioned” time-
ordered or light cone perturbation theory where both the
q and q̄ are on-mass-shell. This form is appropriate when
discussing the dispersion relation (1) in the qq̄ invariant
mass. For high photon momentum pγ the two time-ordered
diagrams have a very different energy mismatch

(
∆E ' Q2 + M2

2pγ

)
� (∆E′ ' pγ) , (12)

and so the contribution from the diagram (∆E′) with the
“wrong” time-ordering may be neglected. The remaining
diagram, with energy denominator 1/∆E, leads to the be-
haviour 1/(Q̄2 + k2

T ) contained in (9), as can be seen on
using (14) below.

In terms of the quark momentum variables z, k2
T of

Fig. 1, (1) and (2) become

σT =
∑

q

α
e2
q

4π2

∑
λ = ± 1

∫
dz d2kT (MT M∗

T )Nc

×1
s

Im Aqq+p

=
∑

q

α
e2
q

2π

∫
dz dk2

T

[z2 + (1 − z)2]k2
T + m2

q

(Q
2

+ k2
T )2

×Nc σqq+p(k2
T ) (13)

where the number of colours Nc = 3, and eq is the charge
of the quark in units of e. We shall give the correspond-
ing cross section σL for longitudinal polarised photons in
Sect. 2.1.

The dispersion relation (2) in M2 has become, in (13),
a two dimensional integral. The relation between the vari-
ables is

M2 =
k2

T + m2
q

z(1 − z)
(14)

where mq is the mass of the quark. For massless quarks
z = 1

2 (1+cos θ), where θ is the angle of the outgoing quark
with respect to the photon in the qq̄ rest frame. The dz
integration is implicit in (2) as the integration over the
quark angular distribution in the spectral function ρ.

To determine F2(x, Q2) at low Q2 we have to evaluate
the contributions to σT coming from the various kinematic
domains. First the contribution from the perturbative do-
main with M2 > Q2

0 and large k2
T , and second from the

non-perturbative or long-distance domains.
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k2

k1

f(x,lT
2)

lT

f(x,lT
2)

lT

 

}
Fig. 2. The quark-proton interaction via two gluon exchange.
The spectator (anti)quark is shown by the dashed line. f(x, l2T )
is the unintegrated gluon distribution of the proton

f(x,lT
2)

k1T=kT+lT

lT

kT

 

}
Fig. 3. A “non-diagonal” qq − proton interaction

2.1 The γ∗p cross section in the perturbative domain

We may begin with the two gluon exchange contribution
to quark–quark scattering

σq+q =
2
9

4π

∫
α2

S(l2T )
dl2T
l4T

(15)

where ±lT are the transverse momenta of the gluons. Thus
for q-proton scattering we obtain

σq+p =
2
3

π2
∫

αS(l2T ) f(x, l2T )
dl2T
l4T

(16)

where
f(x, l2T ) = x∂g(x, l2T )/∂ ln l2T (17)

is the unintegrated gluon density. The process is shown
in Fig. 2. Finally for qq + proton scattering we have to
include the graph for q + p scattering. For both the q and
q interactions we have two diagrams of the type shown in
Fig. 3 with M∗(kT + lT ) and M(kT ). We obtain

σT =
∑

q

αe2
q

π

∫
d2k1T dz d2lT

f(x, l2T )
l4T

αS(l2T )

×
{[

(1 − z)2 + z2] (
k1T

D1
+

lT − k1T

D2

)2

+ m2
q

(
1

D1
− 1

D2

)2
}

(18)

where
x = (Q2 + M2)/s, (19)

D1 = k2
1T + z(1 − z)Q2 + m2

q,

(20)
D2 = (lT − k1T )2 + z(1 − z)Q2 + m2

q.

Expression (18) is written as the square of the ampli-
tude for quark-antiquark production, where we integrate
over the quark momentum k1T in the inelastic intermedi-
ate state, see Fig. 2. The first term, proportional to 1/D1,
corresponds to the amplitude where the gluon couples to
the antiquark k2, while in the second term, proportional
to 1/D2, the gluon couples to the quark k1. Of course form
(18) can also be used to calculate the cross section for high
kT dijet production (γ∗p → qq̄p), where k1T and k2T refer
to the transverse momenta of the outgoing quark jets.

To separate the perturbative and non-perturbative
contributions to the cross section (18) for our inclusive
process we have to introduce a cut on the quark trans-
verse momentum (as well as on the qq̄ invariant mass M).
At first sight it might appear that to obtain the pertur-
bative contribution we simply require k1T > k0. However
this implementation of the cut-off would not be correct.
For instance if, as in Fig. 2, the two exchanged gluons
couple to the k1 line, then k2T = lT − k1T may be small
and in the limit mq → 0 and small Q2 we would have
an unphysical infrared singularity in the region of large
k1T and lT , but small k2T , coming from the 1/D2 term in
(18). To see better the origin of the infrared singularities
we perform the square and write the expression in curly
brackets in (18) in the form{

[(1 − z)2 + z2]k2
1T + m2

q

D2
1

+
[(1 − z)2 + z2](lT − k1T )2 + m2

q

D2
2

+2
[(1 − z)2 + z2]k1T · (lT − k1T ) − m2

q

D1D2

}
. (21)

The danger comes from the second term, which corre-
sponds to Fig. 2, whereas the last term, which describes
interference, is infrared stable, as we will show later. Our
aim is to separate off all the infrared contributions into
the non-perturbative part. Therefore to evaluate the per-
turbative contribution coming from the second term we
have to use the cut-off |lT − k1T | > k0. This is equivalent
to changing the variable of integration for the second term
from k1T to lT − k1T , and so its contribution is exactly
equal to that of the first term. An alternative way to in-
troduce the same cut-off is to separate off the incoming qq̄
configurations with kT < k0 so that (18) becomes

σT =
∑

q

2αe2
q

π

∫
k2
0

d2kT dzd2lT
f(x, l2T )

l4T
αS(l2T )

×
{

[(1 − z)2 + z2]k2
T + m2

q

(Q̄2 + k2
T )2

− [(1 − z)2 + z2]kT · (kT + lT ) + m2
q

(Q̄2 + k2
T )(Q̄2 + (kT + lT )2)

}
. (22)

Note that the transverse momentum kT of the incoming
quark is equal to k1T when the gluon couples to the anti-
quark (first term in (21)) and is equal to k1T −lT when the
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gluon couples to the quark (second term in (21)). Working
in terms of the variable kT corresponding to the disper-
sion cut shown in F ig. 1 has the advantage that it is then
easy to introduce cut-offs with respect to the invariant qq̄
masses M and M ′, which we need to impose in order to
separate off the non-perturbative VDM contribution5.

Another argument in the favour of the cut written in
terms of initial quark momenta kT comes from the impact
parameter representation. Instead of kT we may use the
transverse coordinate b and write the cross section (22) in
the form

σT ∝
∫

dzd2b|Ψγ(b)|2f(x, b)αS(b) (23)

where the gluon distribution

f(x, b) =
∫

d2lT
(2π)2

[1 − eilT ·b]
f(x, l2T )

l4T
. (24)

The photon “wave function” is given by [17]

|Ψγ(b)|2 =
∑

q

αe2
q[z

2 + (1 − z)2]Q̄2K2
1 (Q̄b), (25)

where for simplicity we have set mq = 0. The photon
wave function is simply the Fourier transform of the ma-
trix element M given by (9). It is most natural to take
the infrared cut-off in coordinate space, say b < b0. The
variable which is the Fourier conjugate of b is the incom-
ing quark momentum kT of Fig. 1 (rather than the in-
termediate transverse momentum k1T of Fig. 2). This is
further justification to impose the infrared cut in the form
kT > k0.

Now let us consider the interference contribution, that
is the last term in (22). It is infrared stable since in the
limit m2

q → 0 and Q2 → 0 it takes the form∫
d2kT kT · (kT + lT )

k2
T (kT + lT )2

∼
∫

d(|kT + lT |)
kT

(26)

when |kT +lT | is small. We have used boundaries k2
T = k2

0
and M2 = Q2

0 to separate the perturbative QCD (pQCD),
additive quark model (AQM) and vector meson domi-
nance (VDM) contributions. As a result the γ∗p cross
section formulae, (22), is asymmetric between the ingo-
ing and outgoing quarks. The origin of the asymmetry
is the difference of the transverse momentum of the out-
going quark (kT + lT ) and the incoming quark (kT ) in
Fig. 3. Such a graph therefore represents the interference
between M and M ′ 6= M states. To obtain the pure pQCD
contribution we require the incoming qq system to satisfy
M2 > Q2

0 and kT > k0. Ideally we would like to impose
the same cuts on the outgoing qq system, namely

M ′2 =
(kT + lT )2 + m2

q

z(1 − z)
> Q2

0 (27)

5 Of course the use of the Feynman rules would yield the
same result, but the time-ordered or light cone approach with
the incoming q and q̄ on-shell is more convenient when we
come to separate off the non-perturbative component in terms
of kT < k0 and M, M ′ < Q0

and k′
T = |kT + lT | > k0. However in a small region of

phase space, where lT lies close to −kT , we may have
M ′ < Q0 and/or k′

T < k0. For this region we there-
fore have interference between the pQCD and VDM (or
AQM) contributions. There is no double counting since
neither our VDM or AQM6 components contain interfer-
ence terms. This is fortunate because we cannot neglect
the contribution from this small part of phase space of
Fig. 3 without destroying gauge invariance, which is pro-
vided by the sum of the graphs in Figs. 2 and 3. We stress
that the contribution coming from this limited region lT
close to −kT is infrared stable and hence it is small and
has little impact on the overall fit to the data.

So far we have only calculated σT . In the same way we
may calculate the cross section for longitudinally polarised
incident photons. In this case the relation analogous to
(13) reads

σL =
∑

q

αe2
q

2π

∫
dzdk2

T

4Q2 z2(1 − z)2Nc

(Q
2

+ k2
T )2

×σqq+p(k2
T ), (28)

which on evaluating σqq+p gives

σL =
∑

q

2αe2
q

π
Q2

∫
k2
0

d2kT dz d2lT
f(x, l2T )

l4T

×αS(l2T )4z2(1 − z)2
{

1
(Q̄2 + k2

T )2

− 1
(Q̄2 + k2

T )(Q̄2 + (kT + lT )2)

}
. (29)

From the formal point of view the integrals over l2T and
k2

T cover the interval 0 to ∞. For the l2T integration in the
domain l2T < l20 ∼ 1GeV2 we may use the approximation

αS(l2T ) f(x, l2T ) =
l2T
l20

αS(l20) f(x, l20). (30)

For k2
T < k2

0 we enter the long distance domain which we
discuss next. To be precise we use the formula (22) and
(29) to evaluate the cross sections only in the perturbative
domain M2 > Q2

0 and k2
T > k2

0. We exclude the region
M2 < Q2

0 and k2
T > k2

0 from the perturbative domain
as the point-like (short-distance) component of the vector
meson wave function will be included in the VDM term.

2.2 The γ∗p cross section
in the non-perturbative domain

There are two different non-perturbative contributions.
First for M2 < Q2

0 we use the conventional vector me-
son dominance formula (7) for FT (x, Q2). We also should
include the longitudinal structure function FL(x, Q2). FL

6 For the AQM contribution the interaction with the tar-
get proton is described by the forward elastic quark scattering
amplitude and hence we have z′ = z, k′

T = kT and M = M ′
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is given by a formula just like (7) but with the introduction
of an extra factor ξQ2/M2

V on the right-hand side. ξ(Q2) is
a phenomenological function which should decrease with
increasing Q2. The data for ρ production indicate that
ξ(m2

ρ) <∼ 0.7 [18], whereas at large Q2 the usual properties
of deep inelastic scattering predict that

FL

FT
∼ 4k2

T

Q2
<∼

M2
V

Q2 . (31)

So throughout the whole Q2 region the contribution of FL

is less than that of FT . In order to calculate FL (VDM) we
insert the factor ξQ2/M2

V in (7) and use an interpolating
formula for ξ

ξ = ξ0

(
M2

V

M2
V + Q2

)2

(32)

with ξ0 = 0.7, which accommodates both the ρ meson re-
sults and the deep inelastic expectations of (31). However
the recent ρ electroproduction, γ∗p → ρp, measurements
[19] indicate that σL(ρ)/σT (ρ) may tend to a constant
value for large Q2. We therefore also show the effect of
calculating FL (VDM) from (7) using

ξ = ξ0

(
M2

V

M2
V + Q2

)
, (33)

see Fig. 9 below.
The second non-perturbative contribution covers the

low kT part of the M2 > Q2
0 domain, that is the region

with k2
T < k2

0. Here we use the additive quark model and
the impulse approximation to evaluate the σqq+p cross sec-
tions in formulas (13) and (28).

2.3 Final formulae

For completeness we list below the formulae that we use
for the non-pQCD contributions coming from the kT < k0
domain. When M < Q0, with Q2

0 ' 1 − 1.5GeV2, we use
the vector meson dominance model. We have

σT (VDM) = πα
∑

V =ρ,ω,φ

M4
V σV (W 2)

γ2
V (Q2 + M2

V )2
(34)

σL(VDM) = πα
∑

V =ρ,ω,φ

Q2M2
V σV (W 2)

γ2
V (Q2 + M2

V )2
ξ0

×
(

M2
V

Q2 + M2
V

)2

(35)

with ξ0 = 0.7, see (32). For the vector meson-proton cross
sections, we take

σρ = σω = 1
2 [σ(π+p) + σ(π−p)]

σφ = σ(K+p) + σ(K−p) − 1
2 [σ(π+p) + σ(π−p)] . (36)

Finally for M > Q0 (and kT < k0) we use the additive
quark model and impulse approximation

σT (AQM) = α
∑

q

e2
q

2π

∫
dzdk2

T

[z2 + (1 − z)2]k2
T + m2

q

(Q̃2 + k2
T )2

×Nc σqq+p (W 2) (37)

σL(AQM) = α
∑

q

e2
q

2π

∫
dzdk2

T

4Q2 z2(1 − z)2

(Q̃2 + k2
T )2

×Nc σqq+p (W 2) (38)

where for σqq+p we take, for the light quarks,

σqq+p (W 2) =
2
3

σpp (s = 3
2W 2). (39)

The “photon” wave function contains propagators like
1/(Q

2
+ k2

T ) and in impact parameter bT space it re-
ceives contributions from the whole of the bT plane ex-
tending out to infinity. On the other hand confinement
restricts the quarks to have limited separation, say bT =
|b1T −b2T | <∼ 1 fm. To allow for this effect we have replaced
Q

2
by Q̃2 = Q

2
+µ2 in (37) and (38), where µ is typically

the inverse pion radius. We therefore take µ2 = 0.1GeV2.
This change has no effect for Q2 � µ2 but for Q2 <∼ µ2 it
gives some suppression of the AQM contribution.

2.4 The quark mass

In the perturbative QCD domain we use the (small) cur-
rent quark mass mcurr, while for the long distance con-
tributions it is more natural to use the constituent quark
mass M0. To provide a smooth transition between these
values (in both the AQM and perturbative QCD domains)
we take the running mass obtained from a QCD-motivated
model of the spontaneous chiral symmetry breaking in the
instanton vacuum [20]

m2
q = M2

0

(
Λ2

Λ2 + 2µ2

)6

+ m2
curr.. (40)

The parameter Λ = 61/3/ρ = 1.09 GeV, where ρ =
1/(0.6 GeV) is the typical size of the instanton. µ is the
natural scale of the problem, that is µ2 = z(1− z)Q2 +k2

T
or µ2 = z(1 − z)Q2 + (lT + kT )2 as appropriate. For con-
stituent and current quark masses we take M0 = 0.35 GeV
and mcurr = 0 for the u and d quarks, and M0 = 0.5 GeV
and mcurr = 0.15 GeV for the s quarks.

In summary, the q2 dependence of m2
q is obtained from

the instanton vacuum model, while the normalisation is
fixed by M2

0 . It is interesting to note that this approach
gives a value for the quark condensate which is in reason-
able agreement with the QCD sum rules originally pro-
posed by Shifman et al.[21]. We will see from Fig. 10 that
two very different assumptions for the q2 dependence of
the quark mass do not have a large effect on the behaviour
of F2. Indeed we tried several other forms for the q2 de-
pendence of m2

q; all gave similar results to the continuous
curves shown in Fig. 10.
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3 The description of the data for F2

Though in principle it would appear that we have a para-
meter-free7 prediction of F2(x, Q2) at low Q2, in practise
we have to fix the values of the parameters k2

0 and Q2
0.

Recall that k2
T = k2

0 specifies the boundary between the
non-perturbative and perturbative QCD components, and
that M2 = Q2

0 specifies the boundary between the VDM
and AQM contributions to the non- perturbative compo-
nent. The results that we present correspond to the choice
Q2

0 = 1.5 GeV2, for which the VDM contribution is com-
puted from the ρ, ω and φ meson contributions (with mass
MV < Q0). The more sensitive parameter is k2

0. We there-
fore present results for two choices, namely k2

0 = 0.2 and
0.5 GeV2, which show some interesting and observable dif-
ferences. The results are much more stable to the increase
of k2

0 from 0.5 to 1 GeV2.
To calculate the perturbative contributions we need

to know the unintegrated gluon distribution f(x, l2T ), see
(22) and (29). To determine f(x, l2T ) we carry out the full
programme described in detail in [14]. We solve a “uni-
fied” equation for f(x, l2T ) which incorporates8 BFKL and
DGLAP evolution on an equal footing, and allows the de-
scription of both small and large x data. To be precise
we solve a coupled pair of integral equations for the gluon
and sea quark distributions, as well as allowing for the ef-
fects of valence quarks. As in [14] we take l20 = 1 GeV2,
but due to the large anomalous dimension of the gluon
the results are quite insensitive to the choice of l0 in the
interval 0.8–1.5 GeV.

The starting distributions for the evolution are speci-
fied in terms of three parameters N, λ and β of the gluon

xg(x, l20) = Nx−λ(1 − x)β (41)

where l20 = 1 GeV2. At small x the gluon drives the sea
quark distribution. The kT factorization theorem gives

Sq(x, Q2) =
∫ 1

x

dz

z

∫
dk2

k2 Sq
box(z, k2, Q2)

×f
(x

z
, k2

)
(42)

where Sbox describes the quark box (and crossed box) con-
tribution. The full expression for Sbox is given in [14]. Thus
the sea Sq is given in terms of the gluon f except for the
contribution from the non-perturbative region k2 < k2

0,
where we take

Snp
u = Snp

d = 2Snp
s = C x−0.08(1 − x)8. (43)

7 Apart of course from the form of the input gluon distribu-
tion, g(x, l20)

8 Following [14] we appropriately constrain the transverse
momenta of the emitted gluons along the BFKL ladder. There
is an indication, from comparing the size of the next-to-leading
ln(1/x) contribution [22] to the BFKL intercept with the effect
due to the kinematic constraint [23], that the incorporation of
the constraint into the evolution analysis gives a major part of
the subleading ln(1/x) corrections

Table 1. The values of the gluon parameters of (41)

k2
0 N λ β χ2/datapoint

(GeV2) [423 points]
Fit A 0.2 0.97 0.16 3.6 1.09
Fit B 0.5 0.42 0.32 3.7 1.70

The parameter C is fixed by the momentum sum rule
in terms of the parameters N, λ and β specifying the
gluon. The charm component of the sea is obtained en-
tirely from perturbative QCD (see [14]) with the charm
mass mc = 1.4 GeV. The valence quark contribution plays
a very minor role in our analysis and so we take it from
the GRV set9 of partons [24]. Of course the sea quark dis-
tributions Sq(x, Q2) of (42) (and (43)) are used only to
get a more precise determination of f(x, l2T ) through the
coupled evolution equations. These values for Sq are not
used in our fit to the F2 data since essentially the same
form of the sea contribution is already embedded in (22)
and (29).

We determine the parameters N, λ and β by fitting to
the available data for F2 with x < 0.05. We present two fits
corresponding to a larger perturbative QCD contribution
(Fit A with k2

0 = 0.2 GeV2) and a smaller pQCD compo-
nent (Fit B with k2

0 = 0.5 GeV2). The values of the gluon
parameters are given in Table 1 and the quality of the de-
scription of the F2 data is shown in Fig. 4. Only a selection
of the data fitted are shown in Fig. 4. Both descriptions
are in general satisfactory, but Fit A is superior mainly
due to Fit B lying below the data for Q2 ' 1 GeV2. This
difference is better seen in Fig. 5 which shows the fit as a
function of Q2 for various fixed values of x. We see that
Fit A, with the larger perturbative component is more
able to accommodate the charge in slope going from high
to low Q2. It is informative to show the components of
the cross section. The breakdown is shown in Figs. 6 and
7 for Fits A and B respectively for the maximum energy
W = 245 GeV for which data are available. It appears
that the low Q2 behaviour of the pQCD component with
low lT plays the vital role.

The description of the F2 data by Fit A is better than
that obtained by Badelek and Kwiecinski [4], which is to
be expected since we perform a fit to the data, albeit with
a very economical parametrization. Figure 5 also shows
the HERA photoproduction measurements at W = 170
and 210 GeV. These data are not included in the fit. We
see that our description overshoots the published H1 [26]
and ZEUS [27] measurements, although by a smaller mar-
gin than that of [4]. On the other hand our extrapolation is
in excellent agreement with a subsequent analysis of ZEUS
data performed in [28]. We will return to the comparison
with photoproduction data when we study the effects of a
different choice of the quark mass.

9 The GRV valence distributions were fitted to the MRS(A)
distributions [25] at Q2 = 4 GeV2
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Fig. 4. The description of the F2 data obtained in Fits A and
B. Only a subset of the data fitted is shown

4 Discussion

We have made what appears to be in principle a prediction
of F2, or rather of σγ∗p, over the entire Q2 range which
relies only on the form of the initial gluon distribution,
see (41) and the parameter values of Table 1. However a
comparison of the results of Fits A and B show that in
practice the results are dependent on the choice of the
boundary k2

T = k2
0 between the perturbative and non-

perturbative contributions, where ±kT are the transverse
momenta of the incoming q and q̄ which result from the
γ∗ → qq̄ transition.

There are compelling reasons to select Fit A with k2
0 =

0.2 GeV2, which has the larger perturbative QCD contri-
bution. Fit A is not only preferred by the data, but it
also yields an input gluon with a more reasonable small
x behaviour. In fact for Fit A (k2

0 = 0.2 GeV2) the AQM
contribution is almost negligible and the fit produces a rea-
sonable λ, namely λ = 0.16. On the other hand Fit B (with
k2
0 = 0.5 GeV2) requires a larger λ, λ = 0.32, in order to

compensate for the much more flat x−0.08 behaviour of the
rather large AQM component. Further support for Fit A
comes from the predictions for the longitudinal structure
function, FL. Figure 8 shows that the prediction from Fit
B is much larger than that of Fit A due mainly to the large
AQM contribution. Figure 8 also shows the expectations
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Fig. 5. The curves are the values of the virtual photon-proton
cross section σγ∗p of (5) as a function of Q2 for various values of
the energy W =

√
s corresponding to Fits A and B (multiplied

by the factor shown in brackets). The data [1,2] are assigned to
the value of W which is closest to the experimental W bin. The
upper, lower photoproduction (solid triangular) data points
correspond to W = 210, 170 GeV and are from the H1 [26]
and ZEUS [27] collaborations respectively. The open triangular
points are obtained from an analysis of ZEUS photoproduction
data reported in a thesis by Mainusch [28]

for FL from the analysis of [29] and from the MRST par-
tons [30] of the most recent global parton analysis. We see
these independent determinations of FL favour the pre-
diction of Fit A.

For completeness we show by the dashed curve in Fig. 9
the predictions of σL/σT versus Q2 obtained from Fit A.
This figure also shows the effect of replacing (32) by (33)
in the formula for the VDM contribution to FL. Recall
that (33) was motivated by the possibility that the ratio
σL(ρ)/σL(ρ) for ρ meson electroproduction tends to a con-
stant value A as Q2 → ∞. We see from Fig. 9 that this
change to the VDM contribution affects FL, and hence
σL/σT , mainly in the interval 0.2 < Q2 < 10 GeV2. It is
straightforward to deduce from Fig. 9 the effect of chang-
ing the value of the parameter ξ0 of (33) to match the
constant limit A observed for the ρ ratio.

A remarkable feature of the recent measurements [1,
2] of σ(γ∗p) = (4π2α/Q2) F2(x, Q2) at fixed W , is the
transition from a flat behaviour in the low Q2 domain
to the steep ∼ Q−2 fall off characteristic of perturba-
tive QCD, see Fig. 5. The transition appears to occur at
Q2 ∼ 0.2GeV2. Such a break with decreasing Q2 may re-
flect either the saturation due to the onset of absorption
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Fig. 7. The same as Fig. 6 but for Fit B (with
k2
0 = 0.5 GeV2). The poorer description of the data

in the region Q2 ∼ 1 GeV2, as compared to Fit A, is
clearly apparent and can be attributed to the smaller
perturbative QCD component at low gluon lT

corrections or the fact that we are entering the confine-
ment domain. The observed features of the data favour
the last possibility, which we allow for through the pa-
rameter µ which we introduce below (39). First there is
no similar break in the behaviour of F2 as a function of
x at low x which would be expected if absorptive correc-
tions were important. A related observation is that the
break, as a function of Q2, appears to occur at the same

value Q2 ∼ 0.2GeV2 for those W values for which data
are available. Moreover we directly estimated the effect of
the absorptive corrections in the perturbative QCD com-
ponent10 using the eikonal rescattering model and found

10 In our approach the main effect of screening is hidden by
the fact that we effectively take an x−0.08 behaviour of the
“soft” (VDM + AQM) contribution
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respectively), together with the values obtained by
Badelek, Kwiecinski and Stasto [29] and from the
MRST set of partons [30]

that they give a negligibly small effect on the Q2 behaviour
of the cross section and of F2. On the other hand, if the
break is due to confinement then it is expected to occur
at a value of Q

2
which corresponds to the distances of the

order of 1 fm, that is

z(1 − z) Q2 ∼ Q2/5 ∼ (0.2GeV)2 (44)

which gives Q2 ∼ 0.2GeV2 where the break is observed.
In our calculations we have used a running quark mass

which links the current (mcurr) to the constituent (M0)
mass. The growth of mq in the transition region from per-
turbative QCD to the large distance domain is an impor-
tant non-perturbative effect, which we find is required by
the F2 data. From the theoretical point of view such a
behaviour of mq may be generated by the spontaneous
breakdown of chiral symmetry in the instanton QCD vac-
uum [20]. The qualitative features are that mq ∼ M0 if
the virtuality q2 of the quark is less or of the order of the
square of the inverse of the instanton size, but that mq

decreases quickly as q2 increases. In our analysis we have
used a simplified power approximation for mq, see (40).

It is interesting to explore the effect of a different choice
of quark mass. The dashed curves in Fig. 10 show the ef-
fect of using the constituent (fixed) mass M0 of the quarks
in all the contributions to F2 or σ(γ∗p). As expected in the
large Q2 � M2

0 perturbative domain the change has little
effect. For small Q2 it reduces the predictions. For exam-
ple, the photoproduction estimates for W ∼ 200 GeV are
reduced by more than 10% and would bring our analysis
more into line with the published H1 and ZEUS photopro-
duction measurements. However our running quark mass
predictions (continuous curves) are more physically moti-
vated and should be more reliable. It will be interesting

to see if their agreement with the experimental values ex-
tracted in [28] is maintained when the new photoproduc-
tion measurements are available from the HERA experi-
ments.

A noteworthy point of our description of the F2 data
is the importance of the non-diagonal (M 6= M ′) pertur-
bative QCD contribution to the double dispersion rela-
tion (1). The contribution, which comes from the interfer-
ence terms in (22) (and (29)), corresponds to the diagram
shown in Fig. 3. It clearly has a negative sign, and more-
over{

M2 =
k2

T + m2
q

z(1 − z)

}
6=

{
M ′2 =

(kT + lT )2 + m2
q

z(1 − z)

}
. (45)

After the integration over the azimuthal angle in (22), the
interference term exactly cancels the diagonal first term
for any lT < kT in the limit of Q2 → 0 and mq = 0. As
a result the perturbative component of the cross section
coming from the region of small lT essentially vanishes11
as Q2 → 0. This property, seen in the lT < l0 components
shown in Figs. 6 and 7, helps to reproduce the very flat Q2

behaviour of σ(γ∗p) observed at low Q2, Q2 <∼ 0.2GeV2.
In fact we cannot achieve a satisfactory description of the
F2 data in the transition region and below without this
cancellation. Thus the fact that the low lT gluon contri-
bution becomes very small as Q2 decreases (and in fact
vanishes for lT < kT in the Q2 → 0 limit) may be consid-
ered as a justification of the perturbative QCD contribu-
tion to F2 for low Q2. The VDM cross section (and other
diagonal contributions as well) decrease as 1/(M2

V + Q2)2

11 Of course there is also a non-negligible contribution coming
from the domain lT > kT which does not vanish as Q2 → 0
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(32)

so we require just such a component which increases with
Q2 in order to compensate the decrease of the diagonal
terms. The compensation is well illustrated by Figs. 6 and
7 which show the behaviour of the various components
as a function of Q2. Of course the compensation (that is
the effect of the vanishing of the low l2T contribution as
Q2 → 0) is more manifest in the Fit A where a larger part
of the phase space is described in terms of perturbative
QCD.

It is interesting to note that in this paper we have
included two different types of interference effect. First
we have the dominant interference between the large M
and M ′ states which gives rise to the decrease of the pure
perturbative small lT component of the cross section as
Q2 → 0, and which is responsible for the good description
of the low Q2 data. Then there is the interference between
the perturbative and non-perturbative amplitudes which
we have modelled using the perturbative formula in the
region of small M ′ and/or small |kT + lT |. We have noted
that this contribution is small due to the infrared stability
of the integral, as was shown in (26).

In summary we obtain an excellent description of F2,
or rather of σγ∗p, over the entire Q2 range (from very
low to high values of Q2) in terms of physically motivated
perturbative and non-perturbative contributions.We list
some distinctive features of our approach below.

1. Our treatment of the perturbative region is state-of-
the-art. We repeat, and extend, the entire numerical
analysis of [14]. In this way we are able to work directly
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Fig. 10. The dotted curves show the effect of using a (fixed)
constituent mass, M0, in all contributions. The running mass
fit (continuous curves) and the data are those of Fig. 5

in terms of the unintegrated gluon distribution, which
is determined by solving coupled integro-differential
equations that embody both DGLAP and BFKL evo-
lution. These unified equations are applicable over the
entire perturbative region. This is a distinct advantage
over other treatments. Remarkably few parameters are
required to fully specify the perturbative component.

2. We make a careful treatment of the non-perturbative
regime. We use the VDM where it is well-established
and for higher masses we use reliable input. No free pa-
rameters are introduced. However the results are sensi-
tive to the value of k2

0 which separates the perturbative
from the non-perturbative domain.

3. We emphasize the importance of the perturbative con-
tribution in the non-perturbative domain. In particu-
lar we find that non-diagonal (M 6= M ′) perturbative
QCD contributions play an important role. They can-
cel the diagonal contributions for lT < kT as Q2 tends
to zero. This novel and interesting effect turns out to
be required to describe the behaviour of F2 at low Q2.
Indeed in our physically constrained approach, with
very few parameters, we are unable to describe the
data in the transition region (and below) without this
cancellation.

4. The choice of the boundary between the perturbative
and non-perturbative domains which gives an excel-
lent fit to the data, is also found to yield a physically
sensible gluon distribution and reasonable predictions
for FL.
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